53,123 research outputs found

    Evidence for risk of bias in cluster randomised trials: review of recent trials published in three general medical journals

    Get PDF
    Objective To examine the prevalence of a risk of bias associated with the design and conduct of cluster randomised controlled trials among a sample of recently published studies. Design Retrospective review of cluster randomised trials published in the BMJ, Lancet, and New England Journal of Medicine from January 1997 to October 2002. Main outcome measures Prevalence of secure randomisation of clusters, identification of participants before randomisation (to avoid foreknowledge of allocation), differential recruitment between treatment arms, differential application of inclusion and exclusion criteria, and differential attrition. Results Of the 36 trials identified, 24 were published in the BMJ, I I in the Lancet, and a single trial in the New England journal of Medicine. At the cluster level, 15 (42%) trials provided evidence for secure allocation and 25 (69%) used stratified allocation. Few trials showed evidence of imbalance at the cluster level. However, some evidence of susceptibility to risk of bias at the individual level existed in 14 (39%) studies. Conclusions Some recently published cluster randomised trials may not have taken adequate precautions to guard against threats to the internal validity of their design

    The Optimum Distance at which to Determine the Size of a Giant Air Shower

    Full text link
    To determine the size of an extensive air shower it is not necessary to have knowledge of the function that describes the fall-off of signal size from the shower core (the lateral distribution function). In this paper an analysis with a simple Monte Carlo model is used to show that an optimum ground parameter can be identified for each individual shower. At this optimal core distance, roptr_\mathrm{opt}, the fluctuations in the expected signal, S(ropt)S(r_\mathrm{opt}), due to a lack of knowledge of the lateral distribution function are minimised. Furthermore it is shown that the optimum ground parameter is determined primarily by the array geometry, with little dependence on the energy or zenith angle of the shower or choice of lateral distribution function. For an array such as the Pierre Auger Southern Observatory, with detectors separated by 1500 m in a triangular configuration, the optimum distance at which to measure this characteristic signal is close to 1000 m

    Hysteresis and nonequilibrium work theorem for DNA unzipping

    Full text link
    We study by using Monte Carlo simulations the hysteresis in unzipping and rezipping of a double stranded DNA (dsDNA) by pulling its strands in opposite directions in the fixed force ensemble. The force is increased, at a constant rate from an initial value g0g_0 to some maximum value gmg_m that lies above the phase boundary and then decreased back again to g0g_{0}. We observed hysteresis during a complete cycle of unzipping and rezipping. We obtained probability distributions of work performed over a cycle of unzipping and rezipping for various pulling rates. The mean of the distribution is found to be close (the difference being within 10%, except for very fast pulling) to the area of the hysteresis loop. We extract the equilibrium force versus separation isotherm by using the work theorem on repeated non-equilibrium force measurements. Our method is capable of reproducing the equilibrium and the non-equilibrium force-separation isotherms for the spontaneous rezipping of dsDNA.Comment: 8 figures, Final version to appear in Physical Review

    Analytic solutions of the magnetic annihilation and reconnection problems. I. Planar flow profiles

    Get PDF
    The phenomena of steady-state magnetic annihilation and reconnection in the vicinity of magnetic nulls are considered. It is shown that reconnective solutions can be derived by superposing the velocity and magnetic fields of simple magnetic annihilation models. These solutions contain most of the previous models for magnetic merging and reconnection, as well as introducing several new solutions. The various magnetic dissipation mechanisms are classified by examining the scaling of the Ohmic diffusion rate with plasma resistivity. Reconnection solutions generally allow more favorable "fast" dissipation scalings than annihilation models. In particular, reconnection models involving the advection of planar field components have the potential to satisfy the severe energy release requirements of the solar flare. The present paper is mainly concerned with magnetic fields embedded in strictly planar flows—a discussion of the more complicated three-dimensional flow patterns is presented in Part II [Phys. Plasmas 4, 110 (1997)]

    Spectra of Maser Radiation from a Turbulent, Circumnuclear Accretion Disk. III. Circular polarization

    Get PDF
    Calculations are performed for the circular polarization of maser radiation from a turbulent, Keplerian disk that is intended to represent the sub-parsec disk at the nucleus of the galaxy NGC4258. The polarization in the calculations is a result of the Zeeman effect in the regime in which the Zeeman splitting is much less than the spectral linebreadth. Plausible configurations for turbulent magnetic and velocity fields in the disk are created by statistical methods. This turbulence, along with the Keplerian velocity gradients and the blending of the three hyperfine components to form the 616−5236_{16} - 5_{23} masing transition of water, are key ingredients in determining the appearance of the polarized spectra that are calculated. These spectra are quite different from the polarized spectra that would be expected for a two-level transition where there is no hyperfine structure. The effect of the hyperfine structure on the polarization is most striking in the calculations for the maser emission that represents the central (or systemic) features of NGC4258. Information about magnetic fields is inferred from observations for polarized maser radiation and bears on the structure of accretion disks.Comment: Latex, uses aastex, eucal, to be published in the Astrophysical Journa

    Hall current effects in dynamic magnetic reconnection solutions

    Get PDF
    The impact of Hall current contributions on flow driven planar magnetic merging solutions is discussed. The Hall current is important if the dimensionless Hall parameter (or normalized ion skin depth) satisfies cH>η where η is the inverse Lundquist number for the plasma. A dynamic analysis of the problem shows, however, that the Hall current initially manifests itself, not by modifying the planar reconnection field, but by inducing a non-reconnecting perpendicular "separator" component in the magnetic field. Only if the stronger condition c2/H > η is satisfied can Hall currents be expected to affect the planar merging. These analytic predictions are then tested by performing a series of numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic (MHD) equations. The numerical results confirm that the nature of the merging changes dramatically when the Hall coupling satisfies c2/H > η. In line with the analytic treatment of sheared reconnection, the coupling provided by the Hall term leads to the emergence of multiple current layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate. However, the details of the dissipation depend critically on the symmetries of the simulation, and when the merging is "head-on" (i.e., comprises fourfold symmetry) the reconnection rate can be enhanced

    Bessel beam propagation: Energy localization and velocity

    Full text link
    The propagation of a Bessel beam (or Bessel-X wave) is analyzed on the basis of a vectorial treatment. The electric and magnetic fields are obtained by considering a realistic situation able to generate that kind of scalar field. Specifically, we analyze the field due to a ring-shaped aperture over a metallic screen on which a linearly polarized plane wave impinges. On this basis, and in the far field approximation, we can obtain information about the propagation of energy flux and the velocity of the energy.Comment: 6 pages, 4 figure

    Ultraviolet degradation of thin films of zinc oxide

    Get PDF
    Ultraviolet degradation of zinc oxide thin film
    • 

    corecore